The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo.
نویسندگان
چکیده
The interferon-inducible double-stranded (ds) RNA-activated protein kinase (PKR) exhibits antiviral, anticellular, and antitumor activities. The mechanisms of its enzymatic activation by autophosphorylation and of the observed transdominant inhibitory phenotype of enzymatically inactive mutants have invoked PKR dimerization. Here we present direct evidence in support of PKR-PKR interaction. We show that radiolabeled PKR can specifically interact with matrix-bound unlabeled PKR in the absence of dsRNA. The self-association activity resides, in part, in the N-terminal region of 170 residues, which also constitutes the dsRNA-binding domain (DRBD). DRBD can bind to matrix-bound PKR or to matrix-bound DRBD. Dimerization of DRBD was directly demonstrated by chemical crosslinking. Affinity chromatography and electrophoretic mobility supershift assays demonstrated that mutants that fail to bind dsRNA can still exhibit protein-protein interaction. The PKR-PKR interaction could also be observed in a two-hybrid transcriptional activation assay in mammalian cells and consequently is likely to be an important feature of PKR activity in vivo.
منابع مشابه
Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways.
The interferon-inducible double-stranded RNA protein kinase PKR controls protein synthesis through the phosphorylation of eukaryotic translation initiation factor (eIF)-2. In addition to its demonstrated role in translational control, several reports have suggested a transcriptional role for PKR. Here we report that PKR is involved in IFN- and dsRNA-signaling pathways by modulating the function...
متن کاملIdentification of a 90-kDa polypeptide which associates with adenovirus VA RNAI and is phosphorylated by the double-stranded RNA-dependent protein kinase.
Interferon treatment of mammalian cells induces a double-stranded (ds) RNA-dependent protein kinase known as DAI. When activated, DAI phosphorylates the alpha-subunit of eukaryotic initiation factor eIF-2, impairing its ability to be recycled and leading to the inhibition of protein synthesis. We have identified a novel DAI substrate in the ribosomal salt wash of rabbit reticulocyte lysates. Th...
متن کاملActivation of the double-stranded RNA (dsRNA)-activated human protein kinase in vivo in the absence of its dsRNA binding domain.
The interferon-induced, dsRNA-activated human protein kinase (PKR) exerts antiviral and antiproliferative effects through inhibition of protein synthesis. Studies of structure-function relationships in PKR have shown that two dsRNA binding motifs are important for its autophosphorylation and activation by dsRNA in vitro. To correlate these findings with the activity of PKR in vivo, we examined ...
متن کاملIdentification of the double-stranded RNA-binding domain of the human interferon-inducible protein kinase.
The interferon-inducible double-stranded (ds) RNA-activated protein kinase (p68 kinase) is a physiologically important enzyme that regulates the rate of cellular and viral protein synthesis by phosphorylating and thereby inactivating the peptide chain initiation factor 2. We have generated a cDNA clone of the human p68 kinase by polymerase chain reaction cloning using the recently published seq...
متن کاملInterferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations
Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 18 شماره
صفحات -
تاریخ انتشار 1995